INVESTIGATING THE CROSS-CULTURAL VALIDITY OF DSM-5 AUTISM SPECTRUM DISORDER: EVIDENCE FROM FINNISH AND UK SAMPLES

<table>
<thead>
<tr>
<th>Journal:</th>
<th>Autism</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID:</td>
<td>AUT-13-0099.R1</td>
</tr>
<tr>
<td>Manuscript Type:</td>
<td>Special Issue - The triad of impairments in autism: Unitary or fractionable?</td>
</tr>
</tbody>
</table>

Abstract:

The recent DSM-5 reformulation of autism spectrum disorder (ASD) has received empirical support from North American and UK samples. ASD is an increasingly global diagnosis, and research is needed to discover how well it generalises beyond North America and the UK. We tested the applicability of the DSM-5 model to a sample of Finnish young people with ASD (n=130) or the broader autism phenotype (BAP; n=110). Confirmatory factor analysis tested the DSM-5 model in Finland; and compared the fit of this model between Finnish and UK participants (ASD n=488; BAP n=220). In both countries autistic symptoms were measured using the 3Di. Replicating findings from English-speaking samples, the DSM-5 model fit well in Finnish ASD participants, outperforming a DSM-IV model. The DSM-5 model fit equally well in Finnish and UK ASD samples. Amongst BAP participants this model fit well in the UK but poorly in Finland, suggesting cross-cultural variability may be greatest for milder autistic characteristics. We encourage researchers with data from other cultures to emulate our methodological approach, to map any cultural variability in the manifestation of ASD and the BAP. This would be especially valuable given the ongoing revision of the ICD, the most global of the diagnostic manuals.
INVESTIGATING THE CROSS-CULTURAL VALIDITY OF DSM-5 AUTISM SPECTRUM DISORDER: EVIDENCE FROM FINNISH AND UK SAMPLES

ABSTRACT

The recent DSM-5 reformulation of autism spectrum disorder (ASD) has received empirical support from North American and UK samples. ASD is an increasingly global diagnosis, and research is needed to discover how well it generalises beyond North America and the UK.

We tested the applicability of the DSM-5 model to a sample of Finnish young people with ASD (n=130) or the broader autism phenotype (BAP; n=110). Confirmatory factor analysis tested the DSM-5 model in Finland; and compared the fit of this model between Finnish and UK participants (ASD n=488; BAP n=220). In both countries autistic symptoms were measured using the 3Di. Replicating findings from English-speaking samples, the DSM-5 model fit well in Finnish ASD participants, outperforming a DSM-IV model. The DSM-5 model fit equally well in Finnish and UK ASD samples. Amongst BAP participants this model fit well in the UK but poorly in Finland, suggesting cross-cultural variability may be greatest for milder autistic characteristics. We encourage researchers with data from other cultures to emulate our methodological approach, to map any cultural variability in the manifestation of ASD and the BAP. This would be especially valuable given the ongoing revision of the ICD, the most global of the diagnostic manuals.

Key words: Autism Spectrum Disorder (ASD); Diagnostic and Statistical Manual – Fifth Edition (DSM-5); International Classification of Diseases – 11th Edition (ICD-11); Confirmatory Factor Analysis; Cross-cultural
INVESTIGATING THE CROSS-CULTURAL VALIDITY OF DSM-5 AUTISM SPECTRUM DISORDER: EVIDENCE FROM FINNISH AND UK SAMPLES

There are no diagnostic biomarkers for autism spectrum disorder (ASD) because its constituent disease process is obscure. Therefore, by necessity, ASD is currently conceptualised as a behavioural syndrome, whereby a collection of observable characteristics are posited as manifestations of the latent ASD disease entity. As such, diagnostic criteria for ASD represent a working hypothesis that a specific collection of signs and symptoms signify the presence of ASD. Like all hypotheses, these diagnostic criteria need to be tested against data, and modified accordingly.

With the recent publication of the Diagnostic and Statistical Manual – Fifth Edition (DSM-5), there has been a reformulation of the ASD syndrome, in terms of both its structure and content (American Psychiatric Association, 2013). The third and fourth editions of the DSM proposed that ASD manifests as a triad of symptoms, whereas DSM-5 hypothesises an autism dyad, comprising social communication difficulties and repetitive, stereotyped behaviour (RSB). Abnormalities of sensory perception, previously designated a peripheral feature of ASD, are considered a core feature in DSM-5, classified as a type of RSB. Repetitive use of language, assigned by DSM-IV as a type of communication impairment, is listed as a form of RSB in DSM-5.

These ideas about the ASD syndrome were initially published online by the American Psychiatric Association as draft diagnostic criteria, to encourage their evaluation by independent research groups prior to the publication of DSM-5. In general, this has provided support for the new, DSM-5 conceptualisation of ASD. Several studies using confirmatory factor analysis (CFA) have found a dyadic model, with social communication and RSB
domains, superior to the triadic, DSM-IV-TR model (e.g., Frazier et al., 2012; Mandy et al.,
2012a; Snow et al., 2009). Furthermore there is evidence for the value of including sensory
abnormalities as a core feature of ASD, in the RSB symptom cluster. Sensory abnormalities
are widespread in ASD and less common in other neurodevelopmental disorders (Ben-Sasson
et al., 2009); and they load onto the RSB dimension in factor analytic studies (Gotham et al.,
2007; Mandy et al., 2012a). CFA studies have also supported the DSM-5 notion that
repetitive language is better understood as a form of RSB, rather than as a symptom of
impaired social communication (Gotham et al., 2007). Whilst there is ongoing controversy
about whether DSM-5 has chosen the correct threshold for diagnosis (e.g., Mandy, 2013),
evidence is mounting that the proposed DSM-5 reformulation of the structure and content of
the ASD syndrome possesses greater validity than its DSM-IV-TR predecessor. However, it
should be noted that such evidence comes almost exclusively from English-speaking, and
mostly North American, samples.

The manifestations of ASD vary, depending on the characteristics and circumstances of the
individual who has the disorder. For example, there are distinct male and female phenotypes
(Mandy et al., 2012b), and ASD presents differently depending on the age (Charman et al.,
2005) and intellectual ability (Ingram et al., 2008) of the individual. In the current study, we
seek to engage with the question of whether ASD manifests differently in distinct cultural and
linguistic contexts. The symptoms of ASD are fundamentally social, engendered by a failure
to fulfil conventional standards for social behaviour. What constitutes acceptable and
effective social behaviour is different in different cultural contexts. For example, Norbury
and Sparks (2013) highlight cultural variations in the implicit rules that govern the
pragmatics of language, writing ‘Discourse rules, such as turn taking, interrupting,
appropriate topic choices, use of eye contact, and other nonverbal choices for maintaining
interaction, use of humour, and the ability to question or challenge communication partners,
are largely determined by cultural rules’ (p.48). Social conventions and expectations differ according to culture, with even geographically proximate cultures showing important differences in the way social life is understood and conducted (e.g., Argyle et al., 1986; Elbedour et al., 1997). It is reasonable to hypothesise that the manifestations of ASD may vary according the socio-cultural context in which the disorder presents.

Since autism was first described by a German-trained psychiatrist working in America (Kanner, 1943), ASD has become a global diagnosis. At the time of writing, there are published studies assessing ASD prevalence from all continents except Antarctica, and extensive efforts are underway to translate gold-standard English-language ASD assessments into dozens of languages (Norbury and Sparks, 2013). The drive for large samples, notably in molecular genetic research, has encouraged the combination of data collected in different countries and languages (e.g., Curran et al., 2011). The question of whether ASD presents differently in different cultures has never been more pressing, or more amenable to empirical investigation.

There is a nascent literature on ASD and culture, much of which describes studies using the Autism Quotient (AQ; Baron-Cohen et al., 2001) to measure autistic traits in non-clinical samples. This influential and well-validated self-report measure of autistic traits has been translated from English into several languages, and there are published evaluations of versions in Japanese (Wakabayashi et al., 2006), Mandarin Chinese (Lau et al., 2013), French (Sonie et al., 2013), Italian (Ruta et al., 2012) and Dutch (Hoekstra et al., 2008). Also, the AQ has been administered to English-speaking students from Malaysia and India (Freeth et al., 2013). These studies have tended to replicate findings from UK AQ investigations that males score higher than females (Freeth et al., 2013; Hoekstra et al., 2008; Ruta et al., 2012; Wakabayashi et al., 2006; Lau et al., 2013); and that, amongst students, scientists show more autistic traits than social scientists and arts students (Freeth et al., 2013; Hoekstra et al., 2008;
Wakabayashi et al., 2006). Also, parents of people with ASD score higher on the AQ than control parents in Italy (Ruta et al., 2012) and Taiwan (Lau et al., 2013). Broadly, such findings support the idea that the ASD construct, at least as measured dimensionally by the AQ, has some validity in a range of cultures.

Nevertheless, the international AQ literature has also suggested that there may be some cultural divergence in the presentation of ASD. Wakabashi and colleagues (2006) noticed that their Japanese population of students tended to score higher on the AQ than students in the UK normative sample (Baron-Cohen et al., 2001). Similarly, English-speaking students in Malaysia and India attained higher AQ scores than UK students (Freeth et al., 2013). Such findings are compatible with the idea that some behaviours measured by the AQ that are symptomatic of autistic traits in the UK signify something different in Japan, India and Malaysia. Nevertheless, it is also possible that confounding, non-cultural variables could explain group contrasts in AQ scores. For example, in the study by Freeth and colleagues (2013), compared to the UK control group, the samples from India and Malaysia had a much higher proportion of scientists, which may account for their higher AQ scores. Furthermore it is not clear whether cross-cultural findings from the AQ literature, which mainly focuses on non-clinical participants, generalise to people who actually have ASD.

There are studies that have examined cultural differences amongst people with a clinical ASD diagnosis, but these are difficult to interpret due to non-cultural confounding variables. Matson and colleagues (2011) identified more severe autistic symptoms in children with ASD from the UK and USA, compared to those from Israel and South Korea. However the different national groups in this study were mismatched on age to a large degree. Also, although IQ was not measured, it is likely that any cultural comparisons in this study were seriously confounded by ability level. The children in the UK sample, which had most severe symptoms, were recruited from a school specialising in intellectual disability, whereas the
other samples were drawn from across the full range of the autism spectrum. The finding that UK children with ASD have especially severe challenging behaviour (Cheung et al., 2012) is similarly hard to interpret, as it was derived from an expanded version of the sample that Matson and colleagues (2011) used.

Avoiding such confounds when comparing clinical samples from different countries presents a formidable challenge. Even groups carefully matched on age and gender may be subtly confounded, as different countries are likely to have distinct referral practices. For example, compared to the UK and USA, in countries with a short history of recognising ASD, clinics are less likely to encounter more subtle, high-functioning cases (Kim et al., 2011). Thus national differences in mean scores on ASD symptom measures are difficult to interpret: it is not clear to what extent they reflect cultural differences in ASD symptoms, as opposed to the operation of distinct sampling biases in different countries.

An alternative approach to studying cultural variability in ASD symptoms is to test for differences in the structure, rather than the level, of autistic traits in different countries. Such an approach, using confirmatory factor analysis to compare model fit in data from different countries, has been used effectively to test for cultural differences in symptoms of other mental disorders, such as depression (e.g., Byrne and Baron, 1994) and psychosis (Kwapil et al., 2012). This methodology has the advantage of being less vulnerable to the sorts of confound described above, as it does not rely on comparison of the severity of ASD symptomatology in different samples. We are not aware of any studies formally comparing the factor structure of ASD traits in different countries. There are several papers describing independent factor and principal components analyses of the AQ administered to non-autistic participants in Taiwan (Lau et al., 2013), India, Malaysia (Freet et al., 2013) and the Netherlands (Hoekstra et al., 2008). When compared with each other, and with equivalent analyses of UK data, these have yielded similar, but not identical, factor solutions, raising the
possibility that the structure of autistic symptoms varies according to the cultural and linguistic context in which they present. Nevertheless, without inclusion of participants with ASD and formal statistical comparison of factor structures, no firm conclusions can currently be drawn.

In summary, a nascent literature raises the possibility that ASD varies in its presentation in different cultures, without offering confirmation of this. To date, studies have mostly relied on non-clinical samples, without directly testing whether findings from the general population apply to people with ASD. Furthermore, the inevitable methodological and practical challenges of doing cross-cultural research have resulted in designs that have not matched groups on key variables, making any observed differences in ASD trait severity hard to interpret. We propose an approach that is less vulnerable to the influence of such confounds, involving the use of confirmatory factor analysis to compare formally the fit of autistic symptom models in data collected using the same measurement instrument in different cultures. Specifically we aim to extend recent work on a UK clinic sample (Mandy et al., 2012a) to see whether the DSM-5 model fits well in a Finnish ASD sample, and whether there are significant discrepancies in model fit between the UK and Finland. We also investigated the DSM-5 model’s cross-cultural stability across the spectrum of symptom severity by checking its fit in Finnish participants with sub-clinical autistic traits characteristic of the broader autism phenotype.

METHODS

Participants

The total sample comprised 948 young people, of whom 708 were from the UK and 240 from Finland. Sample characteristics are presented in Table 1. The UK participants have already been described in a previous factor analytic study (Mandy et al., 2012a). They were
consecutive referrals to a specialist clinic for the assessment of ASD. All were verbally fluent and in mainstream education at the time of assessment, as these are referral criteria for this service. The 240 participants from Finland were clinical referrals assessed at a neuropsychiatric unit based in the department of child psychiatry of a university hospital. This is a specialist clinic for people with potential juvenile neuropsychiatric disorders, including ASD. In both the UK and Finnish samples, data were collected by a psychiatrist and/or clinical psychologist as part of a clinical assessment. ASD diagnoses were assigned based on parent-report information collected using the Developmental, Diagnostic and Dimensional Interview (3Di; Skuse et al., 2004), supplemented by direct observation in clinic and reports from the young person’s school. In the current study, in line with DSM-5, we do not distinguish between sub-types of ASD. As such we have grouped all participants receiving a diagnosis of Autistic Disorder, Asperger’s Disorder or Pervasive Developmental Disorder – Not Otherwise Specified as having ASD.

[Table 1 here]

To investigate cultural variability in autistic symptoms across the spectrum of severity, we included in our analyses individuals with elevated but sub-clinical autistic traits characteristic of the broader autism phenotype (BAP). There is no standardised, universal definition of the BAP, with no agreed cut-point to distinguish it from typical development. To promote the replicability and generalisability of our findings, we based our BAP inclusion criteria on the ‘broader spectrum’ category defined by the Autism Genetic Resource Exchange (AGRE). These have the advantage of being systematic, explicit and widely used. The 3Di outputs scores equivalent to those provided by the algorithm of the Autism Diagnostic Interview – Revised (ADI-R). This enabled us to implement the AGRE ‘broader spectrum’ category, as this is defined in terms of ADI-R scores. In effect this meant that any individual who did not reach threshold for having ASD, and who scored above 3 on the 3Di social scale, above 2 on
the 3Di communication scale and above 1 on the 3Di RSB scale was considered to meet criteria for the BAP.

Ages in the overall sample ranged between 2.39 and 21.14 years. Two-thirds (65.2%; n=618) of participants had an ASD, with the remainder (n=330) fulfilling criteria for the BAP. As is shown in Table 1, the Finnish and UK samples did not differ in terms of their age, with all group differences being small (Cohen’s d between .06 and .15) and non-significant. The groups did not differ significantly on gender composition. However the UK sample had higher rates of reported language delay.

This study was conducted after ethical review by the Research and Development departments of the two hospitals from which participants were recruited.

Measures

The Developmental, Dimensional and Diagnostic Interview (3Di) was used to measure symptoms of ASD in both the UK and Finnish samples (Skuse, et al., 2004). This computerised, structured, parent-report interview has an ASD algorithm which combines data from 120 items concerning current and past behaviour. **This algorithm is hierarchical.** Clusters of items are summed and averaged to generate 12 subscale scores (median number of items per subscale = 8.5, range = 2 to 22), which correspond to the 12 diagnostic criteria for autistic disorders listed in DSM-IV. These are then summed to yield three domain scores, each of which corresponds to one of the elements of the DSM-IV autistic triad. The Reciprocal Social Interaction domain score is the sum of subscales measuring nonverbal interaction (S1), peer relationships (S2), sharing (S3) and socio-emotional reciprocity (S4).

The Communication domain score is summed from subscales measuring nonverbal communication (C1), conversational abilities (C2), stereotyped and repetitive language (C3) and play and imagination (C4). The Repetitive and Stereotyped Behaviour domain score is
calculated by adding subscales measuring unusual preoccupations (R1), routines and rituals (R2), repetitive and stereotyped motor behaviour (R3) and persistent preoccupation with parts of objects (R4). These 12 subscale scores are manifest variables in the confirmatory factor analyses reported in this paper. In addition, to account for the full breadth of DSM-5 diagnostic criteria, we included in our analyses the 3Di sensory abnormalities (SA) subscale, calculated from five 3Di items measuring hypo- and hyper-sensitivity to sounds and textures (Mandy et al., 2011).

The original, UK version of 3Di has strong psychometric properties. Test-retest and interrater reliability is good, with all intra class correlation coefficients exceeding .86 (Skuse et al., 2004). The 3Di shows high levels of agreement with the ADI-R in terms of whether an individual crosses clinical threshold for reciprocal social interaction (86% agreement), Communication (100%) and RSB (76%). Further evidence of criterion validity is provided by the high level of agreement between the 3Di algorithm and clinician diagnosis of ASD (positive predictive power of 3Di = 0.93; negative predictive power = .91).

The Finnish version of the 3Di is a direct translation of the English 3Di. Each item was translated by an experienced Finnish psychiatrist (KP) fluent in English, in regular consultation with the 3Di’s progenitor (DS). To test the translated version, it was independently back-translated and checked against the English 3Di by DS. The Finnish version was piloted for a year, before being programmed to enable the same computerised delivery and scoring as the UK version. All subscales and domain scores in the Finnish version are calculated using the same rules as the original, English-language 3Di.

Analysis

Factor analysis is a statistical technique which uses patterns of covariance between a set of observed variables to make inferences about the presence of a smaller number of underlying
constructs, or ‘factors’. In confirmatory factor analysis (CFA) relationships between underlying factors and observed variables are specified \textit{a priori}, and the resultant models are tested to see how well they fit specific data. CFA also enables formal examination of whether a model fits similarly in two or more different datasets. This is called testing for factorial ‘invariance’ or ‘equivalence’. In the current study CFA was conducted using AMOS 19.

In the first part of our investigation we tested three models against our 3Di data from young Finnish people with ASD:

1. The one-factor model, in which all 12 subscales from the 3Di ASD algorithm were hypothesised to load onto a single underlying ASD factor.

2. The DSM-IV model, which posited a triad of underlying factors characterised by impairments in reciprocal social interaction (S1, S2, S3, S4), communication (C1, C2, C3, C4) and repetitive, stereotyped behaviour (R1, R2, R3, R4).

3. The DSM-5 model with two hypothesised factors of social communication impairment (S1, S2, S3, S4, C1, C2) and repetitive, stereotyped behaviour (R1, R2, R3, R4, C3, SA). This model is depicted in Figure 1. Note that this model does not include subscale C4 (impaired play and imagination) as this DSM-IV criterion has been removed from DSM-5. Also reflecting DSM-5 diagnostic criteria, in this model the SA (sensory abnormalities) and C3 (stereotyped and repetitive language) 3Di subscales are specified as loading onto the repetitive and stereotyped behaviour factor.

There is no single indicator of model fit in CFA, so we used diverse indices of fit to evaluate our models, selected according to recommendations in the CFA literature (see Byrne, 2010). These were the standardised root mean residual (SRMR), the comparative fit index (CFI), the root mean square error of approximation (RMSEA) and the consistent version of Akaike’s information criterion (CAIC). The SRMR is the average of the standardised residuals derived
from comparing the correlation matrix of the hypothesised model with the correlation matrix of the data. In a well-fitting model the SRMR will be small, with values less than .08 indicating acceptable model fit, and values below .05 showing good fit. The CFI compares the proposed model to the interdependence model, in which all parameters are assumed to be zero. A CFI above .90 is indicative of adequate fit, with values above .95 showing good fit. The RMSEA is concerned with how well the hypothesised model would fit the population covariance matrix. By convention, RMSEA values below .05 indicate good fit, whilst those below .08 show adequate fit. A RMSEA between .08 and .10 signifies mediocre model fit. The CAIC estimates generalisability of parameter estimates to future samples. It takes into account the number of parameters as well as goodness-of-fit, with smaller values reflecting better fitting, more parsimonious models.

In addition to these indicators of overall model fit, CFA provides measures of how well individual variables fit within a model. Modification Indices (MIs) are provided for each fixed parameter within a model, expressing how much the model would be improved (in terms of χ^2 reduction) if that parameter were to be freely estimated. The identification of egregiously high MIs can help identify misspecified items within a model. In addition to MIs, standardised residuals are provided for each zero-order relationship between observed variables in the model. These express the extent to which the model tends to over- or underestimate specific zero-order relationships. Values outside the range -2.58 to + 2.58 are considered to be excessive, and can indicate the presence of misspecified variables.

In the current study we were particularly interested to test in our Finnish data the validity of specific changes proposed by DSM-5, namely the transfer of repetitive and stereotyped language from the communication to the RSB factor, and the addition of sensory abnormality as an indicator of RSB. Therefore, we inspected MIs and standardised residuals for the
Finnish DSM-5 model, to test whether subscales measuring repetitive and stereotyped
language and sensory abnormalities were well specified within the model.

After we had tested the DSM-5 model in our Finnish ASD data, we proceeded to formally
compare its fit in our UK and Finnish ASD samples. This involved running a series of
evermore constrained models simultaneously in the UK and Finnish data, to conduct an
increasingly rigorous and in-depth test of the DSM-5 model’s factorial invariance. First, we
ran a ‘free model’, which can also be described as a ‘configural model’. This involved
estimating the DSM-5 model (as depicted in figure 1 and described above) in both groups
simultaneously without placing equality constrains on any of its parameters. This was a test
of ‘configural invariance’: whether the same items loaded onto the same two factors in each
group. Also the configural model served as a baseline for comparison with subsequent more
constrained models. Next we ran a ‘measurement model’ by constraining all factor loadings
to be equal in both groups. If this model had a significantly worse fit than the ‘configural
model’ it would indicate that that all factor loadings were not equivalent in the UK and
Finnish samples. In line with standard practice in CFA, a reduction in the CFI of >.01,
compared to the configural model, was taken to indicate significantly worse fit (Cheung and
Rensvold, 2002). Finally we created the ‘structural model’ by adding a further constraint to
the measurement model, specifying that the relationship between the social communication
and RSB factors be equal in both the Finnish and UK ASD samples. If this constraint caused
worse model fit (as indicated by decline in CFI >.01), it would show a lack of structural
invariance, meaning that the two factors had different correlations in our Finnish and UK
data.

We were also interested to see how well our models fit in the Finnish BAP data, and whether
there were differences in the fit of the DSM-5 model for Finnish and UK participants with the
BAP. Thus we fit the one-factor, DSM-IV and DSM-5 models in the Finnish BAP sample
with the intention of comparing the fit of the DSM-5 model in the UK and Finnish BAP samples.

RESULTS

Testing one-factor, DSM-IV and DSM-5 models in the Finnish ASD group.

Table 2 shows indices of fit for each ASD symptom model tested against the data from Finnish participants with ASD. The one-factor model tested whether all 12 DSM-IV core autistic symptoms are well conceptualised as manifestations of a single underlying dimension. This model performed poorly, with each index suggesting inadequate fit. The DSM-IV model tested the hypothesis that autistic symptoms fall into three distinct social, communication and RSB clusters. None of its fit indices fell within the acceptable range. By contrast, the DSM-5 model scored in the acceptable range for all indices of fit and had the lowest CAIC. In comparison to the other models, it attained the best score on each index of fit.

[Table 2 here]

We inspected modification indices (MIs) and standardised residuals for the DSM-5 model in the Finnish ASD group, to gain a more detailed understanding of how specific modifications to diagnostic criteria influenced the model. There were no egregious MIs or elevated standardised residuals for the item measuring stereotyped and repetitive use of language (C3), suggesting that it loads onto the repetitive and stereotyped behaviour factor in this model. Sensory abnormalities also appear to load comfortably onto this factor, as there were no problematic MIs or standardised residuals for that subscale.

Assessing the invariance of the DSM-5 model in UK and Finnish ASD groups
When we ran the DSM-5 model in the UK ASD sample we attained the following estimates of fit: $\chi^2 = 137.5$ (DF=53); standardised RMR = .057; CFI = .910; RMSEA = .057 (90% confidence interval = .046 to .069); CAIC = 317.3. These indicate that the model fit adequately in the UK sample.

To test whether the model fit differently in our two samples, we tested an increasingly constrained series of models across our UK and Finnish data. Firstly we ran a free model (also known as a ‘configural model’), in which all factor loadings and factor covariances were allowed to differ between groups. This served as a baseline for subsequent more stringent tests of invariance, and provided a test of whether the basic structure of the DSM-5 model was equivalent in UK and Finnish samples (i.e., ‘configural invariance’). The free model showed adequate fit (CFI=.917, RMSEA=.039) suggesting configural invariance of the DSM-5 model in our UK and Finnish ASD samples.

Next we constrained all factor loadings as equal across groups, creating the ‘measurement model’. This did not result in a significantly worse fit than the free model (ΔCFI=.002), showing equivalence of factor loadings in the UK and Finnish ASD data. Figure 1 shows the DSM-5 model, including its factor loadings for the UK and Finnish ASD samples. Finally we created the ‘structural model’ by adding one additional constraint, specifying that the covariance between the social communication and RSB factors be equal in the Finnish and UK samples. Once again, this did not result in a model that fit the data significantly worse than the free model (ΔCFI=.003). This shows that the covariance of the two factors in the dyadic DSM-5 model was equivalent in the UK and Finnish ASD samples. In the UK sample the correlation between the social communication and RSB factors was .43, and in the Finnish sample it was .44.

Model fit in the Finnish and UK BAP samples
As is shown in Table 2, none of the three \textit{a priori} models fit well in the Finnish BAP sample. On each index of fit, the one-factor model performed the worst. For the DSM-IV model there was inadequate fit according to the CFI and SRMR, and adequate fit according to the RMSEA. Indices of fit for the DSM-5 model showed a similar pattern, with a marginally inadequate SRMR, an adequate RMSEA and a low CFI. By contrast, in the UK BAP sample the DSM-5 model had adequate fit: $\chi^2 = 80.5$ (DF=53); standardised RMR = .055; CFI = .937; RMSEA = .049 (90% confidence interval = .025 to .069); CAIC = 240.3.

Because the DSM-5 model did not fit adequately in the Finnish BAP sample, we could not formally test its invariance compared to Finnish ASD and UK BAP samples. Instead we sought to understand why the DSM-5 model fit poorly in the Finnish BAP data. Inspection of MIs and standardised residuals did not reveal major model misspecifications. Four factor loadings (S4, C2, R3, C3) were below .3, suggesting that these were not good indicators of underlying autistic trait dimensions in the Finnish BAP population. It is notable that for each model fitted against the Finnish BAP data, the RMSEA and SRMR were either adequate or marginally inadequate, whereas the CFI was always grossly below the threshold for acceptable model fit. Low CFIs indicate insufficient difference between the hypothesised model and the independence model, in which all variables in the model are uncorrelated. Therefore, the low CFI’s attained from models fitted in the Finnish BAP sample may be indicative of low correlations amongst study variables. We explored this possibility by calculating correlation coefficients between the manifest variables of the DSM-5 model in both the Finnish ASD and BAP samples. For the correlations amongst the six social communication items of the DSM-5 model, coefficients in the ASD sample were mostly (14 out of 15 comparisons) larger than the equivalent coefficient in the BAP sample, often significantly so (seven out of 14, according to one-tailed Fisher’s z-test). A similar tendency for lower correlations in the Finnish BAP sample was observed for the six repetitive and
stereotyped behaviour items: in 13 out of 15 comparisons BAP coefficients were lower than
the equivalent in the ASD sample, and seven of these differences were significant.

DISCUSSION

We investigated whether the new DSM-5 description of ASD, which has received support in
the UK and North America, generalises to Finnish young people with ASD. To this end we
used confirmatory factor analysis (CFA) to test the fit of the DSM-5 model in a Finnish ASD
sample. Then we directly compared the fit of the DSM-5 model between young people with
ASD in the UK and Finland. **We also tested the DSM-5 model in Finnish participants with
sub-threshold autistic traits characteristic of the broader autism phenotype.** To our knowledge
this is the first investigation to compare formally the structure of autistic symptoms as
measured in different cultural and linguistic contexts. **Another original facet of this study is
the consideration of cross-cultural stability of autistic symptoms both in people with ASD
and in those with the broader autistic phenotype (BAP).**

Our findings offer strong support for the value of the DSM-5 dyadic model for describing
core symptomatology of Finnish young people with ASD. Our CFA model based on DSM-5
diagnostic criteria performed well when tested against the Finnish ASD data, with all indices
of fit falling in at least the adequate range. By contrast, three-factor (DSM-IV) and one-factor
models were not supported by the data. These findings accord with reports of CFA in
English-speaking clinical samples, which have shown that ASD is better conceptualised as a
dyad, than as a single factor or triad; and that this dyad is constituted of distinct but related
social communication and RSB factors (Frazier et al., 2012; Gotham et al., 2007; Mandy &
Skuse, 2008; Snow et al., 2009).

DSM-5 has instituted changes not just to the broad structure of autistic symptoms, but also to
their content. In particular the RSB domain has been expanded to include repetitive and
stereotyped language and sensory abnormalities. We tested these changes in our Finnish ASD sample, and found evidence for their validity. In our DSM-5 model the subscales measuring repetitive and stereotyped language and sensory abnormalities had substantial loadings onto the RSB factor (.56 and .53 respectively). Furthermore, inspection of standardised residuals and modification indices for these items showed that they were well specified within the DSM-5 model. This fits with previous findings in English-speaking samples of people with ASD, showing that repetitive language and sensory items of the 3Di and ADI-R load onto the RSB factor in dyadic models of autistic symptoms (Gotham et al., 2007; Mandy et al., 2012a).

When we formally tested the invariance of the DSM-5 model in UK and Finnish ASD samples we found further evidence for its applicability beyond UK and North America. Initially we tested for configural invariance, and observed that in both the Finnish and UK ASD samples the basic DSM-5 structure was equally applicable: the same items loaded onto the same factors in both countries. Next we looked at metric invariance, which concerned whether factor loadings were similar across groups. This tells us whether specific symptoms are better or worse indicators of ASD in Finnish versus UK participants. We found evidence for metric invariance, which means that factor loadings in the DSM-5 model were equivalent in both groups. Finally we assessed structural invariance, by testing whether the strength of the association between the two factors of the autism dyad was similar in the UK and Finnish data. This was indeed the case, with almost identical correlations between social communication and RSB factors in the UK (.43) and Finland (.44). As such, we conclude that amongst people with ASD, the autism syndrome shows a similar degree of coherence in both countries.

The extension of our analyses to young people with sub-clinical autistic traits revealed a different pattern of findings. The DSM-5 model did not fit well in the Finnish BAP sample.
with several social communication (‘social reciprocity’ and ‘conversational abilities’) and
repetitive, stereotyped behaviour (‘stereotyped and repetitive behaviour’, ‘stereotyped and
repetitive language’) subscales showing only weak (> .3) factor loadings. In contrast, the two-
factor DSM-5 model showed good fit for our UK BAP participants, in line with findings from
a comparable North American sample (Frazier et al., 2012). One interpretation is that that we
have observed cultural differences in sub-clinical autistic traits, with the BAP manifesting
differently in Finland compared to the UK and North America. Given the lack of cross-
cultural differences found in our ASD participants, this suggests the following hypothesis for
future investigation: specific cultural influences may have a greater effect on the expression
of mild, compared to severe, autistic traits. To date, most studies of cultural differences in
autistic symptoms have relied on general population samples (e.g., Freeth et al., 2013;
Hoekstra et al., 2008; Wakabayashi et al., 2006). Our observations call into question the
generalisability of their findings to people with ASD, and suggest the need for future research
in this area to include both clinical and general-population participants.

Our study should be considered in the light of the following limitations. First, our data came
from clinics specialising in the assessment of children in mainstream education and with
fluent language. Thus, although we do not have IQ data for Finnish and UK participants, it is
likely that our findings pertain to the higher-functioning part of the autistic spectrum, and
may not generalise to individuals with intellectual disability and/or profound speech and
language difficulties. Second, a related issue is that there were higher rates of reported
language delay in the UK sample, and this may be a relevant confound. Nevertheless, such a
confound would be more likely to exaggerate, rather than diminish, group differences so the
finding of similarities between Finnish and UK ASD participants is unlikely to be a resultant
artefact. Third, in order to yield stable, interpretable models, we used subscales, rather than
individual items as manifest variables in our analyses. It is possible that an item-by-item
analysis might uncover subtle differences in individual autistic behaviours that were not detected by our molar approach. **Furthermore, our test of model invariance in ASD was only powered to detect substantial differences in the configuration, measurement and structure of autistic traits** (Meade, Johnson & Braddy, 2008), and so could have missed small differences. **Future research in this area should make use of larger samples, allowing for more powerful CFA using a greater number of manifest variables.** It should also use non-CFA techniques, such as logistic regression, to test focused *a priori* hypotheses about potential areas of cultural difference.

Whilst our analyses address the validity of applying DSM-5’s model of ASD in Finland, they do not of course speak directly to the question of possible differences in other cultures. As described in the Introduction to this paper, large data sets exist for the AQ administered in Japan, Taiwan, India, Malaysia, France, the Netherlands and Italy. Other well-validated assessment tools such as the Social Communication Disorders Checklist (Bolte et al., 2011), The Social Reciprocity Scale (e.g., Bolte, 2012), the Autism Diagnostic Interview-Revised (e.g., de Bildt et al., 2013) and the Autism Diagnostic Observation Schedule (e.g., Kim et al., 2011) have all been administered in a range of cultural contexts. The 3Di has been validated in Thailand (Chuthapisith et al., 2012). We would encourage researchers from across the world to pool such data, in order to conduct the sorts of analyses described in the current paper. Such a process would be especially useful at the current time, given the on-going revision of the International Classification of Disease, which has been translated into 43 languages and is the diagnostic manual with the greatest global reach (World Health Organisation, 2013). The World Health Organisation is asking researchers, clinicians and service users to participate in developing the 11th edition of the ICD, and the mapping of any cultural variability in the presentation of ASD would make a valuable contribution.
REFERENCES

http://mc.manuscriptcentral.com/autism
Journal of autism and developmental disorders.

http://mc.manuscriptcentral.com/autism

Table 1 – Characteristics of the UK and Finnish samples

<table>
<thead>
<tr>
<th></th>
<th>UK</th>
<th>Finland</th>
<th>Total</th>
<th>P</th>
<th>Post hoc</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Autism</td>
<td>Broader</td>
<td>Autism</td>
<td>Broader</td>
<td></td>
</tr>
<tr>
<td></td>
<td>spectrum</td>
<td>autism</td>
<td>spectrum</td>
<td>autism</td>
<td></td>
</tr>
<tr>
<td></td>
<td>disorder</td>
<td>phenotype</td>
<td>disorder</td>
<td>phenotype</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>N=488</td>
<td>N=220</td>
<td>N=130</td>
<td>N=110</td>
<td>N=948</td>
</tr>
<tr>
<td>Mean age in years (SD)</td>
<td>9.60 (3.60)</td>
<td>9.37 (3.35)</td>
<td>9.80 (2.55)</td>
<td>9.83 (2.46)</td>
<td>9.60 (3.30) .555</td>
</tr>
<tr>
<td>Proportion male</td>
<td>81.6%</td>
<td>73.6%</td>
<td>82.3%</td>
<td>82.7%</td>
<td>80.0% .065</td>
</tr>
<tr>
<td>Proportion without first words by age of two years(^1)</td>
<td>31.5%</td>
<td>15.8%</td>
<td>11.6%</td>
<td>8.8%</td>
<td>22.6% <.001</td>
</tr>
<tr>
<td>Proportion without phrase</td>
<td>35.4%</td>
<td>17.4%</td>
<td>12.3%</td>
<td>5.1%</td>
<td>24.8% <.001</td>
</tr>
</tbody>
</table>

\(^1\) UK ASD>UK BAP, Finn ASD, Finn BAP

UK ASD>UK BAP> Finn ASD, Finn BAP
speech by age of three years\(^2\)

\(^1\)N=895 due to 53 parents being unable to recall age at first words; \(^2\)N=868 due to 80 parents being unable to recall age at first phrase
Table 2 - Fit indices for Confirmatory Factor Analysis Models tested against the Finnish Sample (N=240)

<table>
<thead>
<tr>
<th></th>
<th>χ^2</th>
<th>DF</th>
<th>SRMR</th>
<th>CFI</th>
<th>RMSEA (90% confidence interval)</th>
<th>CAIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autism spectrum Disorder (N=-130)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>One-factor</td>
<td>161.7</td>
<td>54</td>
<td>.111</td>
<td>.642</td>
<td>.124 (.103-.147)</td>
<td>302.5</td>
</tr>
<tr>
<td>DSM-IV</td>
<td>118.8</td>
<td>51</td>
<td>.100</td>
<td>.775</td>
<td>.102 (.078-.125)</td>
<td>277.2</td>
</tr>
<tr>
<td>DSM-5</td>
<td>69.6</td>
<td>53</td>
<td>.069</td>
<td>.943</td>
<td>.049</td>
<td>216.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>-----</td>
<td>----</td>
<td>-------</td>
<td>-----</td>
<td>----</td>
<td></td>
</tr>
<tr>
<td>Broader autism phenotype (N=110)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>One-factor</td>
<td>93.5</td>
<td>54</td>
<td>.090</td>
<td>.661</td>
<td>.082</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DSM-IV</td>
<td>73.4</td>
<td>51</td>
<td>.081</td>
<td>.807</td>
<td>.064</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DSM-5</td>
<td>80.5</td>
<td>53</td>
<td>.083</td>
<td>.739</td>
<td>.071</td>
<td></td>
</tr>
</tbody>
</table>

SRMR=standardised root mean residual (<.08 suggests adequate fit); CFI=comparative fit index (> .9 suggests adequate fit); RMSEA=root mean square error of approximation (<.1 suggests adequate fit); CAIC= consistent version of Akaike’s information criterion (lower values suggest better models).
Figure 1 – The DSM-5 model in the UK and Finnish Autism Spectrum Disorder Samples

<table>
<thead>
<tr>
<th>3Di Subscale</th>
<th>Factor loadings</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>UK</td>
</tr>
<tr>
<td>S1 non-verbal interaction</td>
<td>.56</td>
</tr>
<tr>
<td>S2 peer relationships</td>
<td>.50</td>
</tr>
<tr>
<td>S3 sharing</td>
<td>.60</td>
</tr>
<tr>
<td>S4 socio-emotional reciprocity</td>
<td>.44</td>
</tr>
<tr>
<td>C1 non-verbal communication</td>
<td>.64</td>
</tr>
<tr>
<td>C2 conversational abilities</td>
<td>.47</td>
</tr>
<tr>
<td>R1 unusual preoccupations</td>
<td>.48</td>
</tr>
<tr>
<td>R2 routines and rituals</td>
<td>.71</td>
</tr>
<tr>
<td>R3 stereotyped and repetitive behaviour</td>
<td>.46</td>
</tr>
<tr>
<td>R4 preoccupation with parts of objects</td>
<td>.56</td>
</tr>
<tr>
<td>SA Sensory abnormalities</td>
<td>.44</td>
</tr>
<tr>
<td>C3 stereotyped and repetitive language</td>
<td>.55</td>
</tr>
</tbody>
</table>